skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarkar, Grace M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper presents an experimentally parameterized model of the dynamics of oxygen transport in a laboratory animal that simultaneously experiences: (i) a reduction in inspired oxygen plus (ii) an increase in intra-abdominal pressure. The goal is to model the potential impact of elevated intra-abdominal pressure on oxygen transport dynamics. The model contains three compartments, namely, the animal’s lungs, lower body vasculature, and upper body vasculature. The model assumes that intra-abdominal pressure affects the split of cardiac output among the two vasculature compartments and that aerobic metabolism in each compartment diminishes with severe hypoxia. Fitting this model to a laboratory experiment on an adult male Yorkshire swine using a regularized nonlinear least-squares approach furnishes both physiologically plausible parameter values plus a reasonable quality of fit. 
    more » « less